

Micro-biological test results

WHAT IF MANUAL DISINFECTION...

INTRODUCTION TO UV-C LED DISINFECTION

UV-C-LED DISINFECTION

MANUAL DISINFECTION

Patient Safety:

Disinfection with wipes is manual and time consuming => Risk of human variation / error

Multi-Resistance:

Occurrence of **M**ulti-**D**rug or Heat **R**esistant (MDR) Organisms

HealthCare worker:

Exposed to chemicals => irritation of skin, eye & respiratory system

Not Sustainable: Ecotoxic chemicals Waste (wipes, bottles, ..)

Material robustness:

- Materials not always suited to heat or chemicals
- fragile ⇔ 'rubbing'

ZAPARAY UV-C LED DISINFECTION

Increased **Patient Safety:** Automated and electronic validated process

No Resistance:

All DNA containing organisms are subject to UV-C disinfection. Without exception.

HealthCare workers benefits: Reduced exposure to chemicals. Less labour intense, faster disinfection.

Highly sustainable: Less wipes : less waste : less chemicals. Low energy consumption

Extended equipment lifetime: Less damage to fragile materials. No heat, no chemical residues.

DISINFECTION PROTOCOL DIFFERENTIATORS

per cycle

ΖΛΡΛRΛΥ° RΛΥ-ΤΛΟ

ZAPARAY"

INTRODUCTION

UVC disinfection has been used in healthcare setting since 1930. **All organisms with DNA/RNA are sensitive to 270nm UVC-LED radiation**. Depending on the pathogen, a certain amount of radiation (mJ/cm2) results in a certain reduction (LOG x)

ZAPARAY's unique UVC-LED technology has been tested in multiple laboratories. Tests with the RAY-ONE have proven up to a LOG 7,2 reduction for viral contamination and a >LOG 9 reduction of *Staphylococcus Aureus*.

ZAPARAY invests heavily in academic research as UVC-LEDs are novel radiation sources. Multiple studies are ongoing in collaboration with Ghent University and other research partners.

UVC sensitivity of *Bacillus subtilis*

		Fluence (UV dose) (m.Jicm ²) for a given log reduction without photoreactivation		log					
Spore	Lamp Type	1	2	3	4	5	Proto- col?	Notes	Reference
Bacillus subtilis									
ATCC 6633	LP	12	18	24	30	36	yes		Quails & Johnson 1983
ATCC 6633	LP	36	48	59	77		yes		Chang et al. 1985
ATCC 6633	LP	28	40	50			yes		Sommer et al. 1998
ATCC 6633	LP	19	40	60	81		yes		Sommer et al. 1999

<u>DOWNLOAD</u>

VALIDATION AND VERIFICATION

External studies have documented the UVC radiation dose required to reduce pathogens. This dose is measured in mJ/cm2

A typical dose required for a 99,99% (LOG4) bacterial reduction is +-10mJ/cm2.

ZAPARAY's RAY-TWO provides > 100mJ/cm2 with a single radiation cycle.

Online reference literature: NIST - IUVA

External literature on LOG reduction

As tested with the RAY-TWO: Porcine respiratory Coronavirus Staphylococcus aureus Pseudomonas aeruginosa Mycobacterium terrae The results were in line with available UVC literature: Historical laboratory results for these 4 pathogens *

Volume 126, Article No. 126021 (2021) https://doi.org/10.6028/jres.126.021 Journal of Research of the National Institute of Standards and Technology LOG1to6:measured doses Lamp Bacterium 2 Type 4 5 Staphylococcus aureus LP 2.1 3.2 (hem) LP 2.6 ATCC 25923 LP 3.9 5.4 6.5 10 ATCC 25923 LP 5.8 7.3 9 4.4 6.4 Fluence (UV Dose) (mJ cm⁻²) for a Given Log Reduction Without Photoreactivation 2 Bacterium Lamp Type 3 4 5 6 Notes Reference Pseudomonas aeruginosa ATCC 10145 LP 2.8 5.5 7 9.3 [27] ATCC 15442 LP 1.6 3 4.8 8 [28] NCTC 13437 - Antibiotic LP 0.7 1.5 2.3 6 [31] resistant Mycobacterium terrae LP ATCC 15755 3.8 ± 1.3 9.3 16 [35, 36] LOGI dose for PRCV: 1,3mJ/cm2 Porcine Respiratory 254 1.3* Coronavirus (PRCV)

Heßling et al.: Ultraviolet irradiation doses for coronavirus inactivation ...

External literature on LOG reduction

>99,99999%

REDUCTION

8,4 mJ/cm2

UVC LED dose

radiated

Onderwerp: Re: field tests UVC LED disinfector RAY-ONE

- Datum: vrijdag 29 januari 2021 om 13:11:34 Midden-Europese standaardtijd
- Van: Hans Nauwynck
- Aan: Duncan Verstraeten ZAPARAY

1° Material and methods

Virus: porcine respiratory coronavirus - virus titer: 10exp8.0TCID50/ml (surrogate for SARS-CoV-2) Aliquots of 250µl of virus were brought into one well of the special 6-well plates (FEP models), delivered by the company. One 6-well plate was not exposed to UV-C light (control). The other 6-well plates were exposed to UV-C light of the device ZAPARAY RAY-ONE. Positions in the device and exposure times changed depending on the experiment (see results). Afterwards, the fluids were collected and titrated on ST-cells.

2° Results

Control

Virus titer in non-exposed 6-well plate: 10exp8.0TCID50/ml (reference control value)

Experiment 1 (ZAPARAY RAY-ONE with reflectors)

Three 6-well plates were placed at three different positions in the device (Center, Lateral, Front) as mentioned in the proposal. Two exposure times were used: 30 seconds and 60 seconds • Center UV-C exposed for 30": <10exp0.8TCID50/ml (negative) • Lateral UV-C exposed for 30": <10exp0.8TCID50/ml (negative) • Front UV-C exposed for 30": <10exp0.8TCID50/ml (negative) • Center UV-C exposed for 60": <10exp0.8TCID50/ml (negative) • Lateral UV-C exposed for 60": <10exp0.8TCID50/ml (negative) • Lateral UV-C exposed for 60": <10exp0.8TCID50/ml (negative)

Experiment 2 (ZAPARAY RAY-ONE with reflectors)

Four 6-well plates were used. They were enclosed in a plastic bag. The plate was positioned in the center of the device as mentioned in the proposal. Four exposure times were used: 30, 60, 90 and 120 seconds. • Center UV-C exposed for 30": <10exp0.8TCID50/ml (negative) • Center UV-C exposed for 60": <10exp0.8TCID50/ml (negative) • Center UV-C exposed for 90": <10exp0.8TCID50/ml (negative) • Center UV-C exposed for 120": <10exp0.8TCID50/ml (negative)

Experiment 4 (ZAPARAY RAY-ONE without reflectors) Four 6-well plates were used. The plate was positioned in the front of the device as mentioned in the proposal. Four exposure times were used: 10, 20, 40 and 60 seconds. • Front UV-C exposed for 10": 10exp5.6TCID50/ml • Front UV-C exposed for 20": 10exp2.0TCID50/ml • Front UV-C exposed for 40": ≤10exp0.8TCID50/ml (negative) • Front UV-C exposed for 60": ≤10exp0.8TCID50/ml (negative)

3° Conclusions

The device ZAPARAY RAY-ONE with and without reflectors is powerful to inactivate coronaviruses. Within 1 minute a virus reduction of >5log10 was obtained (mostly >7.2log10). A plastic bag did not affect the inactivating power of the device. Without reflectors, the ZAPARAY RAY-ONE was still very performant.

Experiment 3 will be performed next Monday (results on Friday).

Onderwerp: Experiment 3

- Datum: zondag 7 februari 2021 om 12:27:19 Midden-Europese standaardtijd
- Van: Hans Nauwynck
- Aan: Duncan Verstraeten ZAPARAY

1° Material and methods

Virus: porcine respiratory coronavirus - virus titer: 10exp8.0TCID50/ml (surrogate for SARS-CoV-2) Aliquots of 250µl of virus were brought into one well of the special 6-well plates (FEP models), delivered by the company. One 6-well plate was not exposed to UV-C light (control). The other 6-well plates were exposed to UV-C light of the device ZAPARAY RAY-ONE. Positions in the device and exposure times changed depending on the experiment (see results).

Afterwards, the fluids were collected and titrated on ST-cells.

2° Results

Control Virus titer in non-exposed 6-well plate: 10exp8.0TCID50/ml (reference control value)

Experiment 3 (ZAPARAY RAY-ONE with reflectors)

Seven 6-well plates were prepared and placed one by one at the front left side of the device as mentioned in the proposal. Increasing exposure times were used: 5, 10, 15, 20, 30, 40 and 60 seconds.

- Front UV-C exposed for 5": 10exp5.6TCID50/ml
- Front UV-C exposed for 10": 10exp2.8TCID50/ml
- Front UV-C exposed for 15": ≤10exp0.8TCID50/ml (negative)
- Front UV-C exposed for 20": ≤10exp0.8TCID50/ml (negative)
- Front UV-C exposed for 30": ≤10exp0.8TCID50/ml (negative)
- Front UV-C exposed for 40": ≤10exp0.8TCID50/ml (negative)
- Front UV-C exposed for 60": ≤10exp0.8TCID50/ml (negative)

3° Conclusions

The device ZAPARAY RAY-ONE with reflectors is powerful to inactivate coronaviruses. Within 15 seconds a virus reduction of >7.2log10 was obtained.

Prof. dr. Hans Nauwynck

Laboratory of Virology Faculty of Veterinary Medicine Ghent University Salisburylaan 133 9820 Merelbeke

Test Report

Evaluation of the Efficacy of a UV Light Disinfection System.

Client Details:	Zaparay
Client Contact Name:	Mieke Flour
Client Email:	mieke@zaparay.com

PO Number: Date Of Report:

Melbec Reference Number: 30054

Method Overview:

Mix test organism and Bovine Serum Albumin (low level soiling as per EN14561).

11/08/21

Add 50µl of the test mixture onto one face of a 2cm stainless steel cube (as per EN13697).

Test each face orientation individually.

Dry onto the surface.

Place triplicate test cubes in the drawer (see diagram below).

Set the machine for 30 minutes. At 3 min open the drawer to stop the machine and remove the cubes.

Prepare control cubes in the same way as the test cubes but without exposure to UV. After exposure recover the organisms from the cubes by placing the cube face down onto glass beads in 10ml of saline.

Tenfold serially dilute to obtain countable numbers and carry out pour plates using TSA (35 - 38° C, $48h\pm 6h$).

Log reduction after exposure calculated by comparison of test recovery and control recovery.

Layout of Test Discs in Drawer (5cm between centre points)

Test Organism: Staphylococcus aureus ATCC 6538

Test Results:

Recovery from Test Cubes.

Test Replicate & position	Orientation of Inoculated Face Cfu/cube face								
	Facing the Back of the Drawer	Facing the Front of the Drawer	Facing the Right of the Drawer	Facing the Left of the Drawer	Facing Upwards	Facing Downwards			
1	1.32 x 10 ⁵	1.10 x 10 ³	4.40 x 10 ⁴	4.20 x 10 ⁵	2.50 x 10 ⁵	6.80 x 10 ⁴			
2	3.10 x 10 ⁴	2.00 x 10 ³	1.70 x 10 ⁴	1.37 x 104	2.70 x 10 ⁵	4.10 x 10 ³			
3	1.60 x 104	3.20 x 10 ³	8.00 x 10 ³	8.80 x 10 ⁴	4.20 x 104	2.60 x 10 ⁴			
Mean Log	4.76	3.32	4.36	5.24	5.27	4.51			

Recovery from Control Cubes:

	Cfu/cube face
Test Replicate	1270
1	1.90 x 10 ⁸
2	1.70 x 10 ⁸
3	2.30 x 10 ^s
Mean Log	8.29

Log Reduction of Test Organism on Test Cube Compared to Control Cube:

Orientation of Inoculated Face Mean Log Reduction						
Facing the Back of the Drawer	Facing the Front of the Drawer	Facing the Right of the Drawer	Facing the Left of the Drawer	Facing Upwards	Facing Downwards	
3.53	4.97	3.93	3.05	3.02	3.78	

Ambient Temperature (°C) and Relative Humidity Values (%):

	Orientation of Inoculated Face							
	Facing the Back of the Drawer	Facing the Front of the Drawer	Facing the Right of the Drawer	Facing the Left of the Drawer	Facing Upwards	Facing Downwards		
Ambient Temperature	20.4°C	20.0°C	20.0°C	20.3°C	20.4°C	20.0°C		
Relative Humidity	56.5	52.8	53.9	52.7	52.0	51.2		

	Control
Ambient Temperature	19.7°C
Relative Humidity	52.5

Conclusion:

Exposure to the UV light in the prototype device gave a reduction of the test organism on each face of the cube. There was some variability depending on the orientation of the cube.

Steel cube test – directional radiaton test

Test Report

Evaluation of the Efficacy of a UV Light Disinfection System.

Client Details:	Zaparay
Client Contact Name: Client Email:	Mieke Flou mieke@zaj
PO Number:	-
Date Of Report:	19/09/21

paray.com

31680 Melbec Reference Number:

Test Organism: Pseudomonas aeruginosa ATCC 15442

Test Results

			cfu/	disc	Log Reduction (Mean Control Log – Test Log)	Mean Log Reduction (Mean Control Log – Mean Test Log)
Test Organism	Test Replicate & position	Test	Control Replicate	Control		
Pseudomonas aeruginosa	1	3.2 x 10 ²	1	4.80 x 106	4.05	
	2	<1.0 x 10 ¹	2	4.00 x 10 ⁶	>5.56	
	3	<1.0 x 10 ¹	3	2.10 x 10 ⁶	>5.56	>5.06
	Mean Log	<1.50	Mean Log	6.56	100	

Method Overview:

Mix test organism and Bovine Serum Albumin (low level soiling as per EN14561). Add 50µl of the test mixture onto the surface of a 2cm stainless steel discs (as per

EN13697)

Dry onto the surface.

Place triplicate test discs in the drawer (see diagram below).

Set the machine for 30 minutes. At 5 min open the drawer to stop the machine and remove the discs.

Prepare control discs in the same way as the test discs but without exposure to UV. After exposure recover the organisms from the discs by placing the disc face down onto glass beads in 10ml of saline.

Tenfold serially dilute to obtain countable numbers and carry out pour plates using Malt Extract Agar (29 - 31°C, 48h±6h).

Log reduction after exposure calculated by comparison of test recovery and control recovery.

Layout of Test Discs in Drawer

Relative Humidity and Temperature

Test Organism	RH %	Temp °C
Pseudomonas aeruginosa	56.7	23

Conclusion:

Exposure to the UV light in the prototype device gave a mean log reduction of >5.06 for the Pseudomonas aeruginosa with a contact time of 5 minutes.

MYCO-BACTERIA TEST

100 mJ/cm2 UVC LED dose radiated

Test Report

Evaluation of the Efficacy of a UV Light Disinfection System.

Client Contact Name: Client Email:

Client Details:

PO Number:

Date Of Report:

Mieke Flour mieke@zaparay.com

Zaparay

2

16/01/22

Melbec Reference Number:

Method Overview:

Mix test organism and Bovine Serum Albumin (low level soiling as per EN14561).

Add 50μ I of the test mixture onto the surface of a 2cm stainless steel discs (as per EN13697) and spread over the entire surface.

Dry onto the surface.

Place two test discs in the drawer, one disc directly on the weak spot and one disc directly on the powerful spot.

35994 - Mycobacterium terrae

Set the machine for 30 minutes. At 5 min open the drawer to stop the machine and remove the discs.

Prepare control discs in the same way as the test discs but without exposure to UV. After exposure recover the organisms from the discs by placing the disc face down onto glass beads in diluent.

Tenfold serially dilute to obtain countable numbers and carry out pour plates using Middlebrook and Cohn 7 H 10 medium with 10 % OADC enrichment (36°C±1°C, 21d). Log reduction after exposure calculated by comparison of test recovery and control recovery.

Carry out two runs.

Test Organism:

Mycobacterium terrae NC 10856

Test Results:

Test Organism	Test		cfu/disc log/disc	Log Reductio (Control Log – Test		
	Run Te		est	Control	1.000	
		Weak	Strong		weak	strong
Mycobacterium terrae	1	1.0 x 10 ¹ 1.0	<1.0 x 10 ¹ <1.0	1.85 x 10 ⁷ 7.27	6.27	>6.27
	2	1.0 x 10 ¹ 1.0	<1.0 x 10 ¹ <1.0	1.19 x 10 ⁷ 7.08	6.08	>6.08

Conclusion:

Exposure to the UV light in the prototype device gave log reductions of >6.0 for the *Mycobacterium terrae.* There did not appear to be a significant difference in the reductions achieved on the strong and weak spots in the machine.

2023 MICROBIOLOGICAL TESTING – UNIVERSITY GHENT – LBR – LLID laboratories

All tests are conducted using Staphylococcus aureus ATCC 25923

- Inoculation with a 10 μL droplet of a petri-dish followed by a 5 minute disinfection cycle using ZAPARAY RAY-ONE prototype 0/102

	Cfu/mL			Log reduction		
Petri dish	Te	est	Control	(log control – log test)		
EXPERIMENT 20221012	0		1,00E+09	> 9		
EXPERIMENT 20221120	0		1,08E+09	> 9,03		
EXPERIMENT 20221121	0		1,20E+09	> 9,08		
	\bigcirc					

 Inoculation of a nose sensor followed by a 5 minute disinfection cycle using ZAPARAY RAY-ONE prototype 0/102

Validation and Verification – Biological testing

13

2023 MICROBIOLOGICAL TESTING – UNIVERSITY GHENT – LBR – LLID laboratories

Tests performed on disposable video-laryngoscope blade without pre-cleaning 1. Inoculation followed by a 5 minute disinfection cycle using ZAPARAY RAY-ONE prototype 0/102

Validation and Verification – Biological testing

14

2023 MICROBIOLOGICAL TESTING – UNIVERSITY GHENT – LBR – LLID laboratories

Tests performed on dental instruments with (2) and without (1) pre-cleaning

1. Inoculation followed by a 5 minute disinfection cycle using ZAPARAY RAY-ONE prototype 0/102

	Object 1	Object 2	Object 3	Experiment	LOG REDUCTION		ON
2 2 2					Object 1	Object 2	Object 3
	9			20221025	3,81	>7,00	>6,62
				20221107	3,08	4,26	>6,48
			and the second second	20221108	3,50	4,15	>6,20
		Annual Contractor		20220913	2,41	>6.75	>6,38
			1	20220928	3,73	3,51	>6,34
	1	1	mean	3,31	5,13	>6,40	
				stdev	0,58	1,62	0,16

2. Inoculation followed by a **3 second rinsing step** under running water followed by a 5 minute disinfection cycle using ZAPARAY RAY-ONE prototype 0/102

EXPERIMENT 20221127	Cfu/mL			Log reduction		
	\frown	Test	Control	(log control – log test)		
Object 1	0		6,00E+03	3,78		
Object 2	0		1,31E+04	4,12		
Object 3	0		3,60E+03	3,56		
	\Box					

SUMMARY:

without pre-cleaning : influence of object shape

with pre-cleaning : total reduction

Validation and Verification – Biological testing

2022-2023 MICROBIOLOGICAL TESTING – UNIVERSITY GHENT – LBR – LLID laboratories

OVERVIEW PRELIMINARY TEST RESULTS HANNAH SIWE	LAST UPDATED	3/07/23		
Experiments on nose sensors	experiment ID	untreated control	treated	log reduction
non rinsed in third hand	20221127	1,64E+05	0,00E+00	>5,21
	20221129	1,38E+05	0,00E+00	>5,14
	20230110	1,18E+05	0,00E+00	>5,07
non rinsed directly in drawer (15mL)	20230322	3,80E+04	0,00E+00	>4,58
	20230327	9,60E+04	6,00E+03	1,2
		1,20E+05	0,00E+00	>5,08
	20230404	7,40E+04	6,80E+04	1,04
		1,28E+05	0,00E+00	>5,11
	20230426	3,00E+04	2,00E+02	2,18
		4,20E+04	0,00E+00	>4,62
non finsed directly in drawer (10 mL)	20230502	7,20E+04	6,00E+02	2,08
		7,20E+04	0,00E+00	>4,86
non rinsed directly in drawer (new protocol, swab)	20230604	1,50E+04	0,00E+00	>4,18
	20230626	1,08E+05	0,00E+00	>5,0
		1,68E+05	0,00E+00	>5,2
		1,62E+05	0,00E+00	>5,2
Experiments on laryngoscope blades	experiment ID	untreated control	treated	log reduction
	20230116	7,40E+06	0,00E+00	>6,87
		5,20E+06	0,00E+00	>6,72
non rinsed, directly in drawer		6,80E+06	0,00E+00	>6,83
	20230124	4,60E+06 0,00E+00		>6,66
	20230610	9,60E+06 0,00		>6,98
non strend disatilitie drawer in UNC through has	20230124	1,44E+07	0,00E+00	>7,16
non rinsed, directly in drawer in UVC through bag		1,15E+07	0,00E+00	>7,06
	20230320	4,80E+05	0,00E+00	>5,68
		1,86E+06	0,00E+00	>6,27
rinsed, directly in drawer		2,60E+05	0,00E+00	>5,41
	20230610	5,00E+05	0,00E+00	>5,70
		2,60E+05	0,00E+00	>5,41
Experiments on video laryngoscopeblades	experiment ID	untreated control	treated	log reduction
wabbing of 6 different areas	20230626	growth detected 6/6	no growth detected 6/6	NA
Experiments on echoprobes	experiment ID	untreated control	treated	log reduction
swabbing of 8 different areas	20230103	growth detected 8/8 no growth detected 8/8		NA

10 μL S. aureus in petri dish at 5 minutes	experiment ID	untreated control	treated	log reduction
(predilution in 1000 μL)	20221012		0,00E+00	
	20221120		0,00E+00	
	20221121	1,00E+09	0,00E+00	>9
	20221206		0,00E+00	
	20221213	7,40E+08	0,00E+00	>8,87
	20221218		0,00E+00	
	20230109	7,60E+08	0,00E+00	>8,88
	20230110		0,00E+00	
	20230306	1,08E+09	0,00E+00	>9,03
	20230307	7,80E+08	0,00E+00	>8,89
	20230312	8,20E+08	0,00E+00	>8,91
	20230321			
	20230506	1,48E+09	0,00E+00	>9,17
	20230512	1,33E+09	0,00E+00	>9,12
(predilution in 100 μL)	20230606	7,60E+08	0,00E+00	>8,88
	20230608			
	20230630			
10 μL S. aureus in petri dish at different time points	experiment ID	untreated control	treated	logreduction
5 sec	20230522	9,00E+08	4,00E+05	3,35
10 sec	20230522	9,00E+08	0,00E+00	>8,95
	20230516	1,36E+09	0,00E+00	>9,13
	20230512	1,33E+09	0,00E+00	>9,12
20 sec	20230512	1,33E+09	0,00E+00	>9,12
40 sec	20230512	1,33E+09	0,00E+00	>9,12
2 min	20230512	1,33E+09	0,00E+00	>9,12
3 min	20230512	1,33E+09	0,00E+00	>9,12
10 ul. S. pneumoniae in petri dish at different time points	experiment ID	untreated control	treated	log reduction
5 sec	20230522	1,94E+07	0,00E+00	>7,29
10 µL P. aeruginosa in petri dish at different time points	experiment ID	untreated control	treated	logreduction
5 sec	20230522	1,14E+09	1,00E+04	5,06

Validation and Verification – Biological testing

Test report of ECHO-PROBE disinfection at Ghent University Hospital (Belgium)

ECHOPROBES

ECHOPROBES

GHENT

- Received the probes on Friday at 16h, both were disinfected by Tristel DUO LT by the healthcare workers.
 While putting the probes in the cart, there was a risk of cross contamination from the hands handling the instruments.
- Swabs were taken on 4 areas in two tests:
 - right after receiving the probes from Poli Gynaecologie
 - after they have been exposed to a 5 minute UV-C-LED cycle

ECHOPROBES RESULTS OF SWABS AFTER RECEIVING THE PROBES

> yeast

ECHOPROBES RESULTS OF SWABS AFTER RECEIVING THE PROBES THAT WERE UVC EXPOSED

2

4

ECHOPROBES

Swabs were taken on 4 areas in two tests:

- right after receiving the probes from Poli Gynaecologie
- after they have been exposed to UVC 5 minute cycle

First conclusion:

The probes were contaminated prior to this test. A non defined organism was found on the surface, especially around the 'high-touch areas' 2 and 4. Some ultrasound gel residue was found in the cavity of area 4. After a UVC-LED radiation cycle of 5 minutes, there was no longer a contamination found on the devices.

ECHOPROBES - PHASE TWO

Protocol: infecting the probes with a Staphyloccocus aureus LOG9 innoculum.

- d-3 plating of bacteria from -80°C and d-1 passaging by picking up one colony from d-3 plate and replating
- Objects inoculated by dipping tissue in a 50 mL tube containing 45 mL inoculum suspension and rubbing over the front and sides of the echoprobes. Then, dipping again and rubbing the inoculum over the echoprobes for a second time
 - OD: 1,5214 = 1,35E+09 cfu/mL
- Collection of bacteria on objects by dipping a sterile cotton swab in saline a area + plating a quadrant.
- Objects placed directly in the RAY-ONE UV-C-LED device drawer.

Object in drawer

- The RAY-ONE device was adapted to facilitate the cable part of the probe. In order for most of the cable and the connector to remain outside of the device
- Object was not centered in the drawerduring radiation because the "cut out" for the cable was off center (object had tendency to shift left or right)

ECHOPROBES - PHASE TWO

Contamination areas

TREATED

ECHOPROBES

ECHOPROBES

Second conclusion:

The non-treated echoprobes show a significant growth.

The UVC-LED radiated probes do not show any remaining organism

